0%

Problem 871


Problem 871


Drifting Subsets

Let f be a function from a finite set S to itself. A drifting subset for f is a subset A of S such that the number of elements in the union Af(A) is equal to twice the number of elements of A.

We write D(f) for the maximal number of elements among all drifting subsets for f.

For a positive integer n, define fn as the function from {0,1,,n1} to itself sending x to x3+x+1modn.

You are given D(f5)=1 and D(f10)=3.

Find i=1100D(f105+i).


漂移子集

f为从有限集S到其本身的函数。若S的一个子集A满足,并集Af(A)的元素数目是A的元素数目的两倍,则称Af漂移子集

D(f)f所有漂移子集的元素数目最大值。

对于正整数n,定义fn为从集合{0,1,,n1}到其本身的函数,将任意元素x映射到x3+x+1modn

已知D(f5)=1D(f10)=3

i=1100D(f105+i)


Gitalking ...