0%

Problem 876


Problem 876


Triplet Tricks

Starting with three numbers a,b,c, at each step do one of the three operations:

  • change a to 2(b+c)a;
  • change b to 2(c+a)b;
  • change c to 2(a+b)c.

Define f(a,b,c) to be the minimum number of steps required for one number to become zero. If this is not possible then f(a,b,c)=0.

For example, f(6,10,35)=3:
(6,10,35)(6,10,3)(8,10,3)(8,0,3).
However, f(6,10,36)=0 as no series of operations leads to a zero number.

Also define F(a,b)=c=1f(a,b,c). You are given F(6,10)=17 and F(36,100)=179.

Find k=118F(6k,10k).


三元戏法

从三个数a,b,c开始,每一步进行以下三种操作之一:

  • a替换为2(b+c)a
  • b替换为2(c+a)b
  • c替换为2(a+b)c

定义f(a,b,c)为使其中一个数变为零所需的最少步数。如果无法做到这一点,则f(a,b,c)=0

例如,f(6,10,35)=3
(6,10,35)(6,10,3)(8,10,3)(8,0,3).
f(6,10,36)=0,因为不存在使得其中一个数变为零的操作序列。

再定义F(a,b)=c=1f(a,b,c)。已知F(6,10)=17F(36,100)=179

k=118F(6k,10k)


Gitalking ...