Product-sum Numbers
A natural number, , that can be written as the sum and product of a given set of at least two natural numbers, is called a product-sum number: .
For example, .
For a given set of size, , we shall call the smallest with this property a minimal product-sum number. The minimal product-sum numbers for sets of size, , , , , and are as follows.
Hence for , the sum of all the minimal product-sum numbers is ; note that is only counted once in the sum.
In fact, as the complete set of minimal product-sum numbers for is , the sum is .
What is the sum of all the minimal product-sum numbers for ?
积和数
若自然数能够同时表示成一组至少两个自然数的积与和,也即,则称之为积和数。
例如,是积和数,因为。
给定这一组自然数的数目,满足上述性质的最小值被称为最小积和数。当、、、、时,最小积和数如下所示:
因此,对于,所有的最小积和数之和为;注意只被计算了一次。
已知对于,所有最小积和数构成的集合是,这些数之和是。
对于,所有最小积和数之和是多少?
Gitalking ...