0%

Problem 889


Problem 889


Rational Blancmange

Recall the blancmange function from Problem 226: T(x)=n=0s(2nx)2n, where s(x) is the distance from x to the nearest integer.

For positive integers k,t,r, we write
F(k,t,r)=(22k1)T((2t+1)r2k+1).
It can be shown that F(k,t,r) is always an integer.

For example, F(3,1,1)=42, F(13,3,3)=23093880 and F(103,13,6)878922518(mod1 000 062 031).

Find F(1018+31,1014+31,62). Give your answer modulo 1 000 062 031.


有理牛奶冻

考虑226题中提及的牛奶冻函数:T(x)=n=0s(2nx)2n,其中s(x)x到最近整数的距离。

对于正整数k,t,r,记:
F(k,t,r)=(22k1)T((2t+1)r2k+1)
可以证明F(k,t,r)总是一个整数。

例如,F(3,1,1)=42F(13,3,3)=23093880F(103,13,6)878922518(mod1 000 062 031)

F(1018+31,1014+31,62),并对1 000 062 031取余作为你的答案。


Gitalking ...