0%

Problem 90


Problem 90


Cube Digit Pairs

Each of the six faces on a cube has a different digit (0 to 9) written on it; the same is done to a second cube. By placing the two cubes side-by-side in different positions we can form a variety of 2-digit numbers.

For example, the square number 64 could be formed:

In fact, by carefully choosing the digits on both cubes it is possible to display all of the square numbers below one-hundred: 01, 04, 09, 16, 25, 36, 49, 64, and 81.

For example, one way this can be achieved is by placing {0,5,6,7,8,9} on one cube and {1,2,3,4,8,9} on the other cube.

However, for this problem we shall allow the 6 or 9 to be turned upside-down so that an arrangement like {0,5,6,7,8,9} and {1,2,3,4,6,7} allows for all nine square numbers to be displayed; otherwise it would be impossible to obtain 09.

In determining a distinct arrangement we are interested in the digits on each cube, not the order.

{1,2,3,4,5,6} is equivalent to {3,6,4,1,2,5}

{1,2,3,4,5,6} is distinct from {1,2,3,4,5,9}

But because we are allowing 6 and 9 to be reversed, the two distinct sets in the last example both represent the extended set {1,2,3,4,5,6,9} for the purpose of forming 2-digit numbers.

How many distinct arrangements of the two cubes allow for all of the square numbers to be displayed?


立方体数字对

考虑两个立方体,每个立方体的六个面上标有六个不同的、09之间的数字。将这两个立方体并排摆放,我们就可以得到一系列两位数。

例如,平方数64可以通过这样摆放获得:

事实上,通过精心选择两个立方体上的数字,我们可以摆放出所有小于100的平方数:010409162536496481

例如,其中一种方式是,在一个立方体上标上{0,5,6,7,8,9},在另一个立方体上标上{1,2,3,4,8,9}

在本题中,我们允许将标有69的面颠倒过来互相表示,只有这样,如{0,5,6,7,8,9}{1,2,3,4,6,7}这样本来无法表示09的标法,才能够摆放出全部九个平方数。

在考虑什么是不同的标法时,我们关注的是立方体上有哪些数字,而不关心它们的顺序。

{1,2,3,4,5,6}等价于{3,6,4,1,2,5}

{1,2,3,4,5,6}不同于{1,2,3,4,5,9}

但因为我们允许将69颠倒过来互相表示,后一个例子中的两种不同标法都可以拓展为{1,2,3,4,5,6,9}

对这两个立方体,有多少种不同的标法,可以摆放出所有九个平方数?


Gitalking ...