0%

Problem 902


Problem 902


Permutation Powers

A permutation π of {1,,n} can be represented in one-line notation as π(1),,π(n). If all n! permutations are written in lexicographic order then rank(π) is the position of π in this 1-based list.

For example, rank(2,1,3)=3 because the six permutations of {1,2,3} in lexicographic order are:
1,2,31,3,22,1,32,3,13,1,23,2,1

For a positive integer m, we define the following permutation of {1,,n} with n=m(m+1)2:
σ(i)={k(k1)2+1if i=k(k+1)2 for k{1,,m};i+1otherwise;τ(i)=((109+7)imodn)+1π(i)=τ1(σ(τ(i)))
where τ1 is the inverse permutation of τ.

Define P(m)=k=1m!rank(πk), where πk is the permutation arising from applying π k times.

For example, P(2)=4, P(3)=780 and P(4)=38810300.

Find P(100). Give your answer modulo (109+7).


置换的幂

集合{1,,n}的任意置换π可以用一行记法表示为π(1),,π(n)。如果将所有n!个置换按字典序排列,那么rank(π)即是置换π在这个排列中的位置(从1开始计数)。

例如,rank(2,1,3)=3,因为{1,2,3}的六个置换按字典序排列为:
1,2,31,3,22,1,32,3,13,1,23,2,1

对于正整数m,令n=m(m+1)2,并定义如下{1,,n}的置换:
σ(i)={k(k1)2+1若存在k{1,,m}使得i=k(k+1)2;i+1其它情形;τ(i)=((109+7)imodn)+1π(i)=τ1(σ(τ(i)))
其中τ1表示τ的逆置换。

定义P(m)=k=1m!rank(πk),其中πk是指将置换π应用k次得到的置换。

已知P(2)=4P(3)=780P(4)=38810300

P(100),并对(109+7)取余作为你的答案。


Gitalking ...