Problem 91
Right triangles with integer coordinates
The points $P(x_1,y_1)$ and $Q(x_2,y_2)$ are plotted at integer co-ordinates and are joined to the origin, $O(0,0)$, to form $\triangle OPQ$.
There are exactly fourteen triangles containing a right angle that can be formed when each co-ordinate lies between $0$ and $2$ inclusive; that is, $0 \le x_1, y_1, x_2, y_2 \le 2$.
Given that $0 \le x_1, y_1, x_2, y_2 \le 50$, how many right triangles can be formed?
格点直角三角形
考虑格点$P(x_1,y_1)$和$Q(x_2,y_2)$与原点$O(0,0)$相连构成的三角形$\triangle OPQ$。
当点$P$和点$Q$的坐标在$0$到$2$之间,也即$0 \le x_1, y_1, x_2, y_2 \le 2$时,恰好能构造出$14$个直角三角形。
若$0 \le x_1, y_1, x_2, y_2 \le 50$,能构造出多少个直角三角形?