0%

Problem 911


Problem 911


Khinchin Exceptions

An irrational number x can be uniquely expressed as a continued fraction [a0;a1,a2,a3,]:
x=a0+1a1+1a2+1a3+
where a0 is an integer and a1,a2,a3, are positive integers.

Define kj(x) to be the geometric mean of a1,a2,,aj.

That is, kj(x)=(a1a2aj)1/j.

Also define k(x)=limjkj(x).

Khinchin proved that almost all irrational numbers x have the same value of k(x)2.685452 known as Khinchin’s constant. However, there are some exceptions to this rule.

For n0 define
ρn=i=02n22i
For example ρ2, with continued fraction beginning [3;3,1,3,4,3,1,3,], has k(ρ2)2.059767.

Find the geometric mean of k(ρn) for 0n50, giving your answer rounded to six digits after the decimal point.


辛钦例外

任意无理数x可以被唯一地表示为连分数[a0;a1,a2,a3,]
x=a0+1a1+1a2+1a3+
其中a0是整数,a1,a2,a3,都是正整数。

定义kj(x)a1,a2,,aj几何平均值
换言之,kj(x)=(a1a2aj)1/j

同时定义k(x)=limjkj(x)

辛钦证明了,几乎所有无理数x对应的k(x)值都相同,约等于2.685452,这个值被称为辛钦常数。然而,这个规则存在一些例外。

对于n0,定义
ρn=i=02n22i
例如,ρ2的连分数表示的初始部分是[3;3,1,3,4,3,1,3,],对应的k(ρ2)2.059767

0n50范围内所有k(ρn)的几何平均值,并将你的答案四舍五入保留小数点后六位。


Gitalking ...