0%

Problem 916


Problem 916


Restricted Permutations

Let P(n) be the number of permutations of {1,2,3,,2n} such that:

  1. There is no ascending subsequence with more than n+1 elements, and
  2. There is no descending subsequence with more than two elements.

Note that subsequences need not be contiguous. For example, the permutation (4,1,3,2) is not counted because it has a descending subsequence of three elements: (4,3,2). You are given P(2)=13 and P(10)45265702(mod109+7).

Find P(108) and give your answer modulo 109+7.


有限制排列

P(n)为满足以下条件的{1,2,3,,2n}的排列的数量:

  1. 不存在长度超过n+1的递增子序列,且
  2. 不存在长度超过2的递减子序列。

注意子序列不必连续。例如,排列(4,1,3,2)不符合条件,因为它有一个长度为3的递减子序列:(4,3,2)。已知P(2)=13P(10)45265702(mod109+7)

P(108),并对109+7取余作为你的答案。


Gitalking ...