0%

Problem 920


Problem 920


Tau Numbers

For a positive integer n we define τ(n) to be the count of the divisors of n. For example, the divisors of 12 are {1,2,3,4,6,12} and so τ(12)=6.

A positive integer n is a tau number if it is divisible by τ(n). For example τ(12)=6 and 6 divides 12 so 12 is a tau number.

Let m(k) be the smallest tau number x such that τ(x)=k. For example, m(8)=24, m(12)=60 and m(16)=384.

Further define M(n) to be the sum of all m(k) whose values do not exceed 10n. You are given M(3)=3189.

Find M(16).


陶数

对于正整数n,定义τ(n)n的约数个数。例如,12的约数为{1,2,3,4,6,12},因此τ(12)=6

如果一个正整数n能被τ(n)整除,则称之为陶数。例如,τ(12)=6,且6能整除12,所以12是一个陶数。

m(k)为满足τ(x)=k的最小陶数x。例如,m(8)=24m(12)=60m(16)=384

另记M(n)为所有不超过10nm(k)之和。已知M(3)=3189

M(16)


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!