Problem 921 题目发布于 2024-12-14 翻译更新于 2025-02-02 Problem 921 Golden RecurrenceConsider the following recurrence relation:a0=5+12an+1=an(an4+10an2+5)5an4+10an2+1 Note that a0 is the golden ratio. an can always be written in the form pn5+1qn, where pn and qn are positive integers. Let s(n)=pn5+qn5. So, s(0)=15+25=33. The Fibonacci sequence is defined as: F1=1, F2=1, Fn=Fn−1+Fn−2 for n>2. Define S(m)=∑i=2ms(Fi). Find S(1618034). Submit your answer modulo 398874989. 黄金递推考虑以下递推关系:a0=5+12an+1=an(an4+10an2+5)5an4+10an2+1 注意到,a0恰好是黄金比例。 an总可以写成pn5+1qn的形式,其中pn和qn是正整数。 令s(n)=pn5+qn5。因此,s(0)=15+25=33。 斐波那契数列的定义是:F1=1,F2=1,对于n>2有Fn=Fn−1+Fn−2。 定义S(m)=∑i=2ms(Fi)。 求S(1618034),并对398874989取余作为你的答案。
Gitalking ...