0%

Problem 921


Problem 921


Golden Recurrence

Consider the following recurrence relation:
a0=5+12an+1=an(an4+10an2+5)5an4+10an2+1

Note that a0 is the golden ratio.

an can always be written in the form pn5+1qn, where pn and qn are positive integers.

Let s(n)=pn5+qn5. So, s(0)=15+25=33.

The Fibonacci sequence is defined as: F1=1, F2=1, Fn=Fn1+Fn2 for n>2.

Define S(m)=i=2ms(Fi).

Find S(1618034). Submit your answer modulo 398874989.


黄金递推

考虑以下递推关系:
a0=5+12an+1=an(an4+10an2+5)5an4+10an2+1

注意到,a0恰好是黄金比例

an总可以写成pn5+1qn的形式,其中pnqn是正整数。

s(n)=pn5+qn5。因此,s(0)=15+25=33

斐波那契数列的定义是:F1=1F2=1,对于n>2Fn=Fn1+Fn2

定义S(m)=i=2ms(Fi)

S(1618034),并对398874989取余作为你的答案。


Gitalking ...