Problem 921
Golden Recurrence
Consider the following recurrence relation:
$$
\begin{aligned}
a_0 &= \frac{\sqrt 5 + 1}{2}\\
a_{n+1} &= \dfrac{a_n(a_n^4 + 10a_n^2 + 5)}{5a_n^4 + 10a_n^2 + 1}
\end{aligned}
$$
Note that $a_0$ is the golden ratio.
$a_n$ can always be written in the form $\dfrac{p_n\sqrt{5}+1}{q_n}$, where $p_n$ and $q_n$ are positive integers.
Let $s(n)=p_n^5+q_n^5$. So, $s(0)=1^5+2^5=33$.
The Fibonacci sequence is defined as: $F_1=1$, $F_2=1$, $F_n=F_{n-1}+F_{n-2}$ for $n \gt 2$.
Define $\displaystyle S(m)=\sum_{i=2}^{m}s(F_i)$.
Find $S(1618034)$. Submit your answer modulo $398874989$.
黄金递推
考虑以下递推关系:
$$
\begin{aligned}
a_0 &= \frac{\sqrt 5 + 1}{2}\\
a_{n+1} &= \dfrac{a_n(a_n^4 + 10a_n^2 + 5)}{5a_n^4 + 10a_n^2 + 1}
\end{aligned}
$$
注意到,$a_0$恰好是黄金比例。
$a_n$总可以写成$\dfrac{p_n\sqrt{5}+1}{q_n}$的形式,其中$p_n$和$q_n$是正整数。
令$s(n)=p_n^5+q_n^5$。因此,$s(0)=1^5+2^5=33$。
斐波那契数列的定义是:$F_1=1$,$F_2=1$,对于$n > 2$有$F_n=F_{n-1}+F_{n-2}$。
定义$\displaystyle S(m)=\sum_{i=2}^{m}s(F_i)$。
求$S(1618034)$,并对$398874989$取余作为你的答案。