Problem 922
Young’s Game A
A Young diagram is a finite collection of (equally-sized) squares in a grid-like arrangement of rows and columns, such that
- the left-most squares of all rows are aligned vertically;
- the top squares of all columns are aligned horizontally;
- the rows are non-increasing in size as we move top to bottom;
- the columns are non-increasing in size as we move left to right.
Two examples of Young diagrams are shown below.
Two players Right and Down play a game on several Young diagrams, all disconnected from each other. Initially, a token is placed in the top-left square of each diagram. Then they take alternating turns, starting with Right. On Right’s turn, Right selects a token on one diagram and moves it any number of squares to the right. On Down’s turn, Down selects a token on one diagram and moves it any number of squares downwards. A player unable to make a legal move on their turn loses the game.
For $a,b,k\ge 1$ we define an $(a,b,k)$-staircase to be the Young diagram where the bottom-right frontier consists of $k$ steps of vertical height $a$ and horizontal length $b$. Shown below are four examples of staircases with $(a,b,k)$ respectively $(1,1,4)$, $(5,1,1)$, $(3,3,2)$, $(2,4,3)$.
Additionally, define the weight of an $(a,b,k)$-staircase to be $a+b+k$.
Let $R(m, w)$ be the number ways of choosing $m$ staircases, each having weight not exceeding $w$, upon which Right (moving first in the game) will win the game assuming optimal play. Different orderings of the same set of staircases are to be counted separately.
For example, $R(2, 4)=7$ is illustrated below, with tokens as grey circles drawn in their initial positions.
You are also given $R(3, 9)=314104$.
Find $R(8, 64)$ giving your answer modulo $10^9+7$.
杨氏游戏(一)
杨氏图表是指一类有限个(大小相等的)方格组合,这些方格按照网格状排列成行和列,且满足以下条件:
- 所有行最左边的方格垂直对齐;
- 所有列最上边的方格水平对齐;
- 自上而下,行的宽度单调不增;
- 自左而右,列的高度单调不增。
下图展示了两个杨氏图表的例子。
两位玩家阿右和阿下在若干个相互分离的杨氏图表上玩一个游戏。游戏开始时,在每个图表的左上角方格放置一枚棋子。然后他们轮流行动,阿右先行。在阿右的回合,阿右选择一个图表中的棋子并向右移动任意格。在阿下的回合,阿下选择一个图表中的棋子并向下移动任意格。如果一位玩家在其回合无法进行合法移动,则输掉游戏。
对于$a,b,k\ge 1$,定义$(a,b,k)$-阶梯为满足如下条件的杨氏图表:其右下边界由$k$个台阶组成,每个台阶垂直高度为$a$,水平长度为$b$。下图展示了四个阶梯的例子,它们的$(a,b,k)$值分别为$(1,1,4)$、$(5,1,1)$、$(3,3,2)$、$(2,4,3)$。
另外,定义$(a,b,k)$-阶梯的重量为$a+b+k$。
令$R(m, w)$为选择$m$个阶梯、每个阶梯的重量不超过$w$且在最优操作下阿右(游戏先手方)将获胜的方法数目。相同阶梯集合的不同排列要分别计数。
例如,下图展示了$R(2, 4)=7$,其中灰色圆圈表示棋子的初始位置。
已知$R(3, 9)=314104$。
求$R(8, 64)$,并对$10^9+7$取余作为你的答案。