Prime-ary Tree
A full -ary tree is a tree with a single root node, such that every node is either a leaf or has exactly ordered children. The height of a -ary tree is the number of edges in the longest path from the root to a leaf.
For instance, there is one full -ary tree of height , one full -ary tree of height , and seven full -ary trees of height . These seven are shown below.
For integers and with and , define to be the number of full -ary trees of height or less.
Thus, , , and . Also, , , and .
Define to be the set of positive integers such that divides for some integer . For instance, the above values show that , , and are in and , , , and are in .
Let where the intersection is taken over all primes . Finally, define to be the sum of all elements of not exceeding . You are given that and .
Find .
素数多叉树
一个完满叉树是一棵具有单一根结点的树,其中每个结点要么是叶结点,要么恰好有个有序子结点。叉树的高度是从根结点到任一叶结点的最长路径上的边数。
例如,高度为的完满叉树有一棵,高度为的完满叉树有一棵,而高度为的完满叉树有七棵,如下图所示:
对于整数和,定义为高度不超过的完满叉树的数量。
因此,,,。同时,,,。
定义为能整除任意整数对应的的正整数的集合。例如,从上面的例子可知,、和属于,而、、和属于。
记,其中交集取遍所有素数。再定义为中不超过的所有元素之和。已知,。
求。
译注:原文的Full -ary Tree直译为“满叉树”;然而,在中文网络中,“满二叉树”的概念其实对应于英文中的Perfect Binary Tree,或“完美二叉树”。为示区别,这里参考网络资料将其翻译为“完满叉树”。
Be the first person to leave a comment!