0%

Problem 93


Problem 93


Arithmetic Expressions

By using each of the digits from the set, {1,2,3,4}, exactly once, and making use of the four arithmetic operations (+,,×,/) and brackets/parentheses, it is possible to form different positive integer targets.

For example,
8=(4×(1+3))/214=4×(3+1/2)19=4×(2+3)136=3×4×(2+1)
Note that concatenations of the digits, like 12+34, are not allowed.

Using the set, {1,2,3,4}, it is possible to obtain thirty-one different target numbers of which 36 is the maximum, and each of the numbers 1 to 28 can be obtained before encountering the first non-expressible number.

Find the set of four distinct digits, a<b<c<d, for which the longest set of consecutive positive integers, 1 to n, can be obtained, giving your answer as a string: abcd.


算术表达式

使用集合{1,2,3,4}中每个数字恰好一次,再加上四则运算(+,,×,/)和括号,可以表示许多不同的整数。

例如:
8=(4×(1+3))/214=4×(3+1/2)19=4×(2+3)136=3×4×(2+1)
注意不允许把数字连起来使用,比如12+34

使用集合{1,2,3,4},可以表示出31个不同的数,其中最大值是36,并且可以连续表示128之间的所有数。

考虑所有四个不同数字a<b<c<d构成的集合,求其中可以从1开始连续表示最多个正整数的集合,并以字符串abcd的形式给出你的答案。


Gitalking ...