0%

Problem 93


Problem 93


Arithmetic expressions

By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and making use of the four arithmetic operations (+, −, *, /) and brackets/parentheses, it is possible to form different positive integer targets.

For example,

8 = (4 * (1 + 3)) / 2
14 = 4 * (3 + 1 / 2)
19 = 4 * (2 + 3) − 1
36 = 3 * 4 * (2 + 1)

Note that concatenations of the digits, like 12 + 34, are not allowed.

Using the set, {1, 2, 3, 4}, it is possible to obtain thirty-one different target numbers of which 36 is the maximum, and each of the numbers 1 to 28 can be obtained before encountering the first non-expressible number.

Find the set of four distinct digits, a < b < c < d, for which the longest set of consecutive positive integers, 1 to n, can be obtained, giving your answer as a string: abcd.


算术表达式

使用集合{1, 2, 3, 4}中每个数字恰好一次以及(+, −, *, /)四则运算和括号,可以得到不同的正整数。

例如,

8 = (4 * (1 + 3)) / 2
14 = 4 * (3 + 1 / 2)
19 = 4 * (2 + 3) − 1
36 = 3 * 4 * (2 + 1)

注意不允许直接把数字连起来,如12 + 34。

使用集合{1, 2, 3, 4},可以得到31个不同的数,其中最大值是36,以及1到28之间所有的数。

若使用包含有四个不同数字a < b < c < d的集合可以得到从1到n之间所有的数,求其中使得n最大的集合,并将你的答案写成字符串:abcd。