0%

Problem 930


Problem 930


The Gathering

Given $n\ge 2$ bowls arranged in a circle, $m\ge 2$ balls are distributed amongst them.

Initially the balls are distributed randomly: for each ball, a bowl is chosen equiprobably and independently of the other balls. After this is done, we start the following process:

  1. Choose one of the $m$ balls equiprobably at random.
  2. Choose a direction to move - either clockwise or anticlockwise - again equiprobably at random.
  3. Move the chosen ball to the neighbouring bowl in the chosen direction.
  4. Return to step $1$.

This process stops when all the $m$ balls are located in the same bowl. Note that this may be after zero steps, if the balls happen to have been initially distributed all in the same bowl.

Let $F(n, m)$ be the expected number of times we move a ball before the process stops. For example, $F(2, 2) = \frac{1}{2}$, $F(3, 2) = \frac{4}{3}$, $F(2, 3) = \frac{9}{4}$, and $F(4, 5) = \frac{6875}{24}$.

Let $G(N, M) = \sum_{n=2}^N \sum_{m=2}^M F(n, m)$. For example, $G(3, 3) = \frac{137}{12}$ and $G(4, 5) = \frac{6277}{12}$. You are also given that $G(6, 6) \approx 1.681521567954e4$ in scientific format with $12$ significant digits after the decimal point.

Find $G(12, 12)$. Give your answer in scientific format with $12$ significant digits after the decimal point.


小球聚会

将$n\ge 2$个碗排成一圈,并向其中放入$m\ge 2$个球。

一开始,球是随机分布的:对于每个球,等概率且独立地选择一个碗,并将球放入。全部放完之后,我们进行以下操作:

  1. 等概率地从$m$个球中随机选择一个。
  2. 等概率地随机选择一个移动方向:顺时针或逆时针。
  3. 将选中的球移动到所选方向的相邻碗中。
  4. 返回步骤$1$。

当所有$m$个球都位于同一个碗中时,停止操作。如果球一开始恰好就放在同一个碗中,则不需要进行任何操作,立刻停止。

令$F(n, m)$为在停止前移动球的期望次数。例如,$F(2, 2) = \frac{1}{2}$,$F(3, 2) = \frac{4}{3}$,$F(2, 3) = \frac{9}{4}$,$F(4, 5) = \frac{6875}{24}$。

令$G(N, M) = \sum_{n=2}^N \sum_{m=2}^M F(n, m)$。例如,$G(3, 3) = \frac{137}{12}$,$G(4, 5) = \frac{6277}{12}$。已知$G(6, 6) \approx 1.681521567954e4$(以科学计数法表示,小数点后保留$12$位有效数字)。

求$G(12, 12)$,并以科学计数法表示给出你的答案,小数点后保留$12$位有效数字。