0%

Problem 930


Problem 930


The Gathering

Given n2 bowls arranged in a circle, m2 balls are distributed amongst them.

Initially the balls are distributed randomly: for each ball, a bowl is chosen equiprobably and independently of the other balls. After this is done, we start the following process:

  1. Choose one of the m balls equiprobably at random.
  2. Choose a direction to move - either clockwise or anticlockwise - again equiprobably at random.
  3. Move the chosen ball to the neighbouring bowl in the chosen direction.
  4. Return to step 1.

This process stops when all the m balls are located in the same bowl. Note that this may be after zero steps, if the balls happen to have been initially distributed all in the same bowl.

Let F(n,m) be the expected number of times we move a ball before the process stops. For example, F(2,2)=12, F(3,2)=43, F(2,3)=94, and F(4,5)=687524.

Let G(N,M)=n=2Nm=2MF(n,m). For example, G(3,3)=13712 and G(4,5)=627712. You are also given that G(6,6)1.681521567954e4 in scientific format with 12 significant digits after the decimal point.

Find G(12,12). Give your answer in scientific format with 12 significant digits after the decimal point.


小球聚会

n2个碗排成一圈,并向其中放入m2个球。

一开始,球是随机分布的:对于每个球,等概率且独立地选择一个碗,并将球放入。全部放完之后,我们进行以下操作:

  1. 等概率地从m个球中随机选择一个。
  2. 等概率地随机选择一个移动方向:顺时针或逆时针。
  3. 将选中的球移动到所选方向的相邻碗中。
  4. 返回步骤1

当所有m个球都位于同一个碗中时,停止操作。如果球一开始恰好就放在同一个碗中,则不需要进行任何操作,立刻停止。

F(n,m)为在停止前移动球的期望次数。例如,F(2,2)=12F(3,2)=43F(2,3)=94F(4,5)=687524

G(N,M)=n=2Nm=2MF(n,m)。例如,G(3,3)=13712G(4,5)=627712。已知G(6,6)1.681521567954e4(以科学计数法表示,小数点后保留12位有效数字)。

G(12,12),并以科学计数法表示给出你的答案,小数点后保留12位有效数字。


Gitalking ...