Problem 932
$2025$
For the year $2025$:
$$2025 = (20 + 25)^2$$
Given positive integers $a$ and $b$, the concatenation $ab$ we call a $2025$-number if $ab = (a+b)^2$.
Other examples are $3025$ and $81$.
Note $9801$ is not a $2025$-number because the concatenation of $98$ and $1$ is $981$.
Let $T(n)$ be the sum of all $2025$-numbers with $n$ digits or less. You are given $T(4) = 5131$.
Find $T(16)$.
$2025$
今年的年份$2025$满足
$$2025 = (20 + 25)^2$$
给定正整数$a$和$b$,如果将其连接后满足等式$ab = (a+b)^2$,则称$ab$为$2025$数。
其它的例子有$3025$和$81$。
注意$9801$不是$2025$数,因为$98$和$1$连接后是$981$。
令$T(n)$为所有不超过$n$位的$2025$数之和。已知$T(4) = 5131$。
求$T(16)$。