0%

Problem 935


Problem 935


Rolling Square

A square of side length b<1 is rolling around the inside of a larger square of side length 1, always touching the larger square but without sliding.

Initially the two squares share a common corner. At each step, the small square rotates clockwise about a corner that touches the large square, until another of its corners touches the large square. Here is an illustration of the first three steps for b=513.

0935_rolling.png

For some values of b, the small square may return to its initial position after several steps. For example, when b=12, this happens in 4 steps; and for b=513 it happens in 24 steps.

Let F(N) be the number of different values of b for which the small square first returns to its initial position within at most N steps. For example, F(6)=4, with the corresponding b values:
12,22,2+22+42,852+4336,
the first three in 4 steps and the last one in 6 steps. Note that it does not matter whether the small square returns to its original orientation.
Also F(100)=805.

Find F(108).


翻滚的正方形

一个边长为b<1的小正方形在边长为1的大正方形内部以始终接触大正方形且不滑动的方式翻滚。

一开始,这两个正方形在一个角上重合。此后每一步,小正方形围绕其接触大正方形的一个角顺时针旋转,直到它的另一个角接触到大正方形。如下图所示是b=513时前三步的示意图。

0935_rolling.png

对于b的某些取值,小正方形可能在若干步后回到其初始位置。例如,当b=12时,需要4步;而对于b=513,则需要24步。

F(N)为使小正方形在最多N步内首次回到其初始位置的b的不同取值的数目。例如,F(6)=4,对应的 b 值为:
12,22,2+22+42,852+4336,
其中,前三个需要4步,最后一个需要6步。注意这里并不要求小正方形回到其初始方向
此外,F(100)=805

F(108)


Gitalking ...