Problem 936
Peerless Trees
A peerless tree is a tree with no edge between two vertices of the same degree. Let $P(n)$ be the number of peerless trees on $n$ unlabelled vertices.
There are six of these trees on seven unlabelled vertices, $P(7)=6$, shown below.
Define $\displaystyle S(N) = \sum_{n=3}^N P(n)$. You are given $S(10) = 74$.
Find $S(50)$.
无同树
无同树是指没有连接相同度数顶点的边的树。记$P(n)$为包含$n$个无标记顶点的无同树的数量。
包含七个无标记顶点的无同树有六棵,即$P(7)=6$,如下图所示。
定义$\displaystyle S(N) = \sum_{n=3}^N P(n)$。已知$S(10) = 74$。
求$S(50)$。