0%

Problem 939


Problem 939


Partisan Nim

Two players A and B are playing a variant of Nim.
At the beginning, there are several piles of stones. Each pile is either at the side of A or at the side of B. The piles are unordered.

They make moves in turn. At a player’s turn, the player can

  • either choose a pile on the opponent’s side and remove one stone from that pile;
  • or choose a pile on their own side and remove the whole pile.

The winner is the player who removes the last stone.

Let $E(N)$ be the number of initial settings with at most $N$ stones such that, whoever plays first, A always has a winning strategy.

For example $E(4) = 9$; the settings are:

Nr. Piles at the side of A Piles at the side of B
1 $4$ none
2 $1, 3$ none
3 $2, 2$ none
4 $1, 1, 2$ none
5 $3$ $1$
6 $1, 2$ $1$
7 $2$ $1, 1$
8 $3$ none
9 $2$ none

Find $E(5000) \bmod 1234567891$.


偏心的取石子游戏

两名玩家A和B正在玩一种变体取石子游戏。
游戏开始时,有数堆石子,每一堆石子要么属于A,要么属于B;石子堆之间是无序的。

两名玩家轮流行动。轮到任一玩家时,该玩家可以

  • 选择属于对手的一堆石子,并从中移除一枚石子;或者
  • 选择属于自己的一堆石子,并移除整堆。

移除最后一枚石子的玩家获胜。

令$E(N)$为最多有$N$枚石子,且无论谁先行动A总是有必胜策略的初始局面数量。

例如,$E(4) = 9$,这些初始局面分别是:

编号 属于A的石子堆 属于B的石子堆
1 $4$
2 $1, 3$
3 $2, 2$
4 $1, 1, 2$
5 $3$ $1$
6 $1, 2$ $1$
7 $2$ $1, 1$
8 $3$
9 $2$

求$E(5000) \bmod 1234567891$。