0%

Problem 940


Problem 940


Two-Dimensional Recurrence

The Fibonacci sequence $(f_i)$ is the unique sequence such that

  • $f_0=0$
  • $f_1=1$
  • $f_{i+1}=f_i+f_{i-1}$

Similarly, there is a unique function $A(m,n)$ such that

  • $A(0,0)=0$
  • $A(0,1)=1$
  • $A(m+1,n)=A(m,n+1)+A(m,n)$
  • $A(m+1,n+1)=2A(m+1,n)+A(m,n)$

Define $S(k)=\displaystyle\sum_{i=2}^k\sum_{j=2}^k A(f_i,f_j)$. For example
$$
\begin{aligned}
S(3)&=A(1,1)+A(1,2)+A(2,1)+A(2,2)\\
&=2+5+7+16\\
&=30
\end{aligned}
$$

You are also given $S(5)=10396$.

Find $S(50)$, giving your answer modulo $1123581313$.


二维递归

斐波那契数列$(f_i)$是指满足以下条件的唯一数列:

  • $f_0=0$
  • $f_1=1$
  • $f_{i+1}=f_i+f_{i-1}$

类似地,存在唯一的函数$A(m,n)$满足:

  • $A(0,0)=0$
  • $A(0,1)=1$
  • $A(m+1,n)=A(m,n+1)+A(m,n)$
  • $A(m+1,n+1)=2A(m+1,n)+A(m,n)$

定义$S(k)=\displaystyle\sum_{i=2}^k\sum_{j=2}^k A(f_i,f_j)$。例如:
$$
\begin{aligned}
S(3)&=A(1,1)+A(1,2)+A(2,1)+A(2,2)\\
&=2+5+7+16\\
&=30
\end{aligned}
$$

已知$S(5)=10396$。

求$S(50)$,并对$1123581313$取余作为你的答案。