Problem 940
Two-Dimensional Recurrence
The Fibonacci sequence $(f_i)$ is the unique sequence such that
- $f_0=0$
- $f_1=1$
- $f_{i+1}=f_i+f_{i-1}$
Similarly, there is a unique function $A(m,n)$ such that
- $A(0,0)=0$
- $A(0,1)=1$
- $A(m+1,n)=A(m,n+1)+A(m,n)$
- $A(m+1,n+1)=2A(m+1,n)+A(m,n)$
Define $S(k)=\displaystyle\sum_{i=2}^k\sum_{j=2}^k A(f_i,f_j)$. For example
$$
\begin{aligned}
S(3)&=A(1,1)+A(1,2)+A(2,1)+A(2,2)\\
&=2+5+7+16\\
&=30
\end{aligned}
$$
You are also given $S(5)=10396$.
Find $S(50)$, giving your answer modulo $1123581313$.
二维递归
斐波那契数列$(f_i)$是指满足以下条件的唯一数列:
- $f_0=0$
- $f_1=1$
- $f_{i+1}=f_i+f_{i-1}$
类似地,存在唯一的函数$A(m,n)$满足:
- $A(0,0)=0$
- $A(0,1)=1$
- $A(m+1,n)=A(m,n+1)+A(m,n)$
- $A(m+1,n+1)=2A(m+1,n)+A(m,n)$
定义$S(k)=\displaystyle\sum_{i=2}^k\sum_{j=2}^k A(f_i,f_j)$。例如:
$$
\begin{aligned}
S(3)&=A(1,1)+A(1,2)+A(2,1)+A(2,2)\\
&=2+5+7+16\\
&=30
\end{aligned}
$$
已知$S(5)=10396$。
求$S(50)$,并对$1123581313$取余作为你的答案。