Problem 956
Super Duper Sum
The total number of prime factors of $n$, counted with multiplicity, is denoted $\Omega(n)$.
For example, $\Omega(12)=3$, counting the factor $2$ twice, and the factor $3$ once.
Define $D(n, m)$ to be the sum of all divisors $d$ of $n$ where $\Omega(d)$ is divisible by $m$.
For example, $D(24, 3)=1+8+12=21$.
The superfactorial of $n$, often written as $n\$$, is defined as the product of the first $n$ factorials:
$$n\$=1!\times 2! \times\cdots\times n!$$
The superduperfactorial of $n$, we write as $n\bigstar$, is defined as the product of the first $n$ superfactorials:
$$n\bigstar=1\$ \times 2\$ \times\cdots\times n\$ $$
You are given $D(6\bigstar, 6)=6368195719791280$.
Find $D(1\ 000\bigstar, 1\ 000)$. Give your answer modulo $999\ 999\ 001$.
超级无敌和
记$n$的质因数数目(包括重复)为$\Omega(n)$。
例如,$\Omega(12)=3$,包括两个质因数$2$和一个质因数$3$。
定义$D(n, m)$为$n$的所有满足$\Omega(d)$能被$m$整除的因数$d$之和。
例如,$D(24, 3)=1+8+12=21$。
$n$的超级阶乘,通常记作$n\$$,定义为前$n$个阶乘的乘积:
$$n\$=1!\times 2! \times\cdots\times n!$$
$n$的超级无敌阶乘,我们记作$n\bigstar$,定义为前$n$个超级阶乘的乘积:
$$n\bigstar=1\$ \times 2\$ \times\cdots\times n\$ $$
已知$D(6\bigstar, 6)=6368195719791280$。
求$D(1\ 000\bigstar, 1\ 000)$,并对$999\ 999\ 001$取余作为你的答案。