Problem 957
Point Genesis
There is a plane on which all points are initially white, except three red points and two blue points.
On each day, every line passing through a red point and a blue point is constructed. Then every white point, where two different such lines meet, turns blue.
Let $g(n)$ be the maximal possible number of blue points after $n$ days.
For example, $g(1)=8$ and $g(2)=28$.
Find $g(16)$.
点·创世纪
起初,平面上所有的点都是白色的,除了三个红点和两个蓝点。
每一天,所有经过一个红点和一个蓝点的直线被构造出来。然后,任意两条不同的这样的直线相交处的白点变为蓝色。
记$g(n)$为$n$天后蓝点数量的最大可能值。
例如,$g(1)=8$,$g(2)=28$。
求$g(16)$。