Problem 965
Expected Minimal Fractional Value
Let $\{x\}$ denote the fractional part of a real number $x$.
Define $f_N(x)$ to be the minimal value of $\{nx\}$ for integer $n$ satisfying $0 < n \le N$.
Further define $F(N)$ to be the expected value of $f_N(x)$ when $x$ is sampled uniformly in $[0, 1]$.
You are given $F(1) = \frac{1}{2}$, $F(4) = \frac{1}{4}$ and $F(10) \approx 0.1319444444444$.
Find $F(10^4)$ and give your answer rounded to $13$ digits after the decimal point.
最小分数期望值
记$\{x\}$为实数$x$的小数部分。
定义$f_N(x)$为,对于所有满足$0 < n \le N$的整数$n$,$\{nx\}$的最小值。
进一步定义$F(N)$为,当$x$在$[0, 1]$上均匀随机选择时,$f_N(x)$的期望值。
已知$F(1) = \frac{1}{2}$,$F(4) = \frac{1}{4}$,$F(10) \approx 0.1319444444444$。
求$F(10^4)$,并四舍五入到小数点后$13$位作为你的答案。