0%

Problem 104


Problem 104


Pandigital Fibonacci Ends

The Fibonacci sequence is defined by the recurrence relation:
Fn=Fn1+Fn2, where F1=1 and F2=1.

It turns out that F541, which contains 113 digits, is the first Fibonacci number for which the last nine digits are 1-9 pandigital (contain all the digits 1 to 9, but not necessarily in order). And F2749, which contains 575 digits, is the first Fibonacci number for which the first nine digits are 1-9 pandigital.

Given that Fk is the first Fibonacci number for which the first nine digits AND the last nine digits are 1-9 pandigital, find k.


两端全数字的斐波那契数

斐波那契数列由如下递归关系生成:
Fn=Fn1+Fn2,其中F1=1,且F2=1

包含有113位数字的F541是第一个最后9位数字是19全数字(包含19所有的数字,但不一定按照顺序)的斐波那契数,而包含有575位数字的F2749是第一个前9位数字是19全数字的斐波那契数。

Fk是第一个前9位数字和后9位数字都是19全数字的斐波那契数,求k


Gitalking ...