Problem 129
Repunit divisibility
A number consisting entirely of ones is called a repunit. We shall define $R(k)$ to be a repunit of length $k$; for example, $R(6) = 111111$.
Given that $n$ is a positive integer and $\text{GCD}(n, 10) = 1$, it can be shown that there always exists a value, $k$, for which $R(k)$ is divisible by $n$, and let $A(n)$ be the least such value of $k$; for example, $A(7) = 6$ and $A(41) = 5$.
The least value of $n$ for which $A(n)$ first exceeds ten is $17$.
Find the least value of $n$ for which $A(n)$ first exceeds one-million.
循环单位数整除性
只包含数字$1$的数被称为循环单位数。定义$R(k)$是长度为$k$的循环单位数,例如,$R(6) = 111111$。
如果$n$是一个整数,且$GCD(n, 10) = 1$,可以验证总存在$k$使得$R(k)$能够被$n$整除,并记$A(n)$为这些$k$中最小的一个。例如,$A(7) = 6$,$A(41) = 5$。
最小的、满足$A(n)$大于十的$n$为$17$。
求最小的、满足$A(n)$大于一百万的$n$。