Problem 147
Rectangles in cross-hatched grids
In a 3x2 cross-hatched grid, a total of 37 different rectangles could be situated within that grid as indicated in the sketch.
There are 5 grids smaller than 3x2, vertical and horizontal dimensions being important, i.e. 1x1, 2x1, 3x1, 1x2 and 2x2. If each of them is cross-hatched, the following number of different rectangles could be situated within those smaller grids:
1x1: 1
2x1: 4
3x1: 8
1x2: 4
2x2: 18
Adding those to the 37 of the 3x2 grid, a total of 72 different rectangles could be situated within 3x2 and smaller grids.
How many different rectangles could be situated within 47x43 and smaller grids?
交叉对角线方格中的长方形
在一个3x2的标记了所有交叉对角线的方格中,一共有37种不同的长方形其各边是方格内的线段,如下图所示。
从长和宽两方面考虑,有五个方格比3x2要小,大小分别是1x1,2x1,3x1,1x2和2x2。 如果将它们都标记上交叉对角线,则在这些更小的方格中有如下数目的不同长方形:
1x1: 1
2x1: 4
3x1: 8
1x2: 4
2x2: 18
把这些数和37加起来,可知对于3x2或更小的交叉对角线方格,一共有72种不同的长方形。
对于47x43或更小的交叉对角线方格,一共有多少种不同的长方形?