0%

Problem 18


Problem 18


Maximum path sum I

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.

3 7 4 2 4 6 8 5 9 3

That is, 3 + 7 + 4 + 9 = 23.

Find the maximum total from top to bottom of the triangle below:

75 95 64 17 47 82 18 35 87 10 20 04 82 47 65 19 01 23 75 03 34 88 02 77 73 07 63 67 99 65 04 28 06 16 70 92 41 41 26 56 83 40 80 70 33 41 48 72 33 47 32 37 16 94 29 53 71 44 65 25 43 91 52 97 51 14 70 11 33 28 77 73 17 78 39 68 17 57 91 71 52 38 17 14 91 43 58 50 27 29 48 63 66 04 68 89 53 67 30 73 16 69 87 40 31 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23

NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)


最大路径和 I

从下面展示的三角形的顶端出发,不断移动到在下一行与其相邻的元素,能够得到的最大路径和是23。

3 7 4 2 4 6 8 5 9 3

如上图,最大路径和为 3 + 7 + 4 + 9 = 23。

求从下面展示的三角形顶端出发到达底部,所能够得到的最大路径和:

75 95 64 17 47 82 18 35 87 10 20 04 82 47 65 19 01 23 75 03 34 88 02 77 73 07 63 67 99 65 04 28 06 16 70 92 41 41 26 56 83 40 80 70 33 41 48 72 33 47 32 37 16 94 29 53 71 44 65 25 43 91 52 97 51 14 70 11 33 28 77 73 17 78 39 68 17 57 91 71 52 38 17 14 91 43 58 50 27 29 48 63 66 04 68 89 53 67 30 73 16 69 87 40 31 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23

注意: 在这个问题中,由于只有16384条路径,通过尝试所有的路径来解决问题是可行的。但是,对于第67题,虽然是一道相同类型的题目,但是三角形将拥有一百行,此时暴力破解将不能解决,而需要一个更加聪明的办法!;o)