0%

Problem 221


Problem 221


Alexandrian Integers

We shall call a positive integer A an “Alexandrian integer”, if there exist integers p, q, r such that:

$$A=p·q·r \text{ and } \frac{1}{A}=\frac{1}{p}+\frac{1}{q}+\frac{1}{r}$$

For example, 630 is an Alexandrian integer (p = 5, q = −7, r = −18). In fact, 630 is the 6th Alexandrian integer, the first 6 Alexandrian integers being: 6, 42, 120, 156, 420 and 630.

Find the 150000th Alexandrian integer.


亚历山大整数

我们称一个正整数A为“亚历山大整数”,如果存在整数p、q、r满足:

$$A=p·q·r \text{ 且 } \frac{1}{A}=\frac{1}{p}+\frac{1}{q}+\frac{1}{r}$$

例如,630是一个亚历山大整数(p = 5,q = −7,r = −18)。事实上,630是第6个亚历山大整数,前6个亚历山大整数分别是6、42、120、156、420和630。

求第150000个亚历山大整数。