0%

Problem 228


Problem 228


Minkowski Sums

Let Sn be the regular n-sided polygon – or shape – whose vertices vk (k = 1,2,…,n) have coordinates:

$x_k= \text{cos(}\frac{2k-1}{n} \times 180^\circ \text{)}$ $y_k= \text{sin(}\frac{2k-1}{n} \times 180^\circ \text{)}$

Each Sn is to be interpreted as a filled shape consisting of all points on the perimeter and in the interior.

The Minkowski sum, S+T, of two shapes S and T is the result of adding every point in S to every point in T, where point addition is performed coordinate-wise: (u, v) + (x, y) = (u+x, v+y).

For example, the sum of S3 and S4 is the six-sided shape shown in pink below:

picture showing S_3 + S_4

How many sides does S1864 + S1865 + … + S1909 have?


闵可夫斯基和

记Sn为正n边形——或者叫图形——且其顶点vk(k = 1,2,…,n)的坐标为:

$x_k= \text{cos(}\frac{2k-1}{n} \times 180^\circ \text{)}$ $y_k= \text{sin(}\frac{2k-1}{n} \times 180^\circ \text{)}$

每个Sn都是实心图形,包含有其边界上和内部的所有点。

两个图形S和T的闵可夫斯基和是将S所包含的每个点加在T内的每个点所得的结果,这里所谓两个点相加即将它们的坐标相加:(u, v) + (x, y) = (u+x, v+y)。

例如,S3和S4的闵可夫斯基和是如下粉色的六边形:

picture showing S_3 + S_4

闵可夫斯基和S1864 + S1865 + … + S1909是一个多少边形?