Problem 229
Four Representations using Squares
Consider the number 3600. It is very special, because
Similarly, we find that 88201 = 992 + 2802 = 2872 + 2×542 = 2832 + 3×522 = 1972 + 7×842.
In 1747, Euler proved which numbers are representable as a sum of two squares.
We are interested in the numbers n which admit representations of all of the following four types:
where the ak and bk are positive integers.
There are 75373 such numbers that do not exceed 107.
How many such numbers are there that do not exceed 2×109?
四种平方数表示
3600是个特别的数,因为
相似地,我们发现88201 = 992 + 2802 = 2872 + 2×542 = 2832 + 3×522 = 1972 + 7×842。
在1747年,欧拉证明了哪些数字可以表示成两个平方数之和。
我们感兴趣的则是那些数字n可以写成如下四种形式的平方数之和:
其中ak和bk均为正整数。
在不超过107的数中,满足这一性质的有75373个。
在不超过2×109的数中,满足这一性质的有多少个?