0%

Problem 229


Problem 229


Four Representations using Squares

Consider the number 3600. It is very special, because

3600 = 482 +      362 3600 = 202 + 2×402 3600 = 302 + 3×302 3600 = 452 + 7×152

Similarly, we find that 88201 = 992 + 2802 = 2872 + 2×542 = 2832 + 3×522 = 1972 + 7×842.

In 1747, Euler proved which numbers are representable as a sum of two squares.
We are interested in the numbers n which admit representations of all of the following four types:

n = a12 +    b12 n = a22 + 2 b22 n = a32 + 3 b32 n = a72 + 7 b72,

where the ak and bk are positive integers.

There are 75373 such numbers that do not exceed 107.
How many such numbers are there that do not exceed 2×109?


四种平方数表示

3600是个特别的数,因为

3600 = 482 +      362 3600 = 202 + 2×402 3600 = 302 + 3×302 3600 = 452 + 7×152

相似地,我们发现88201 = 992 + 2802 = 2872 + 2×542 = 2832 + 3×522 = 1972 + 7×842

在1747年,欧拉证明了哪些数字可以表示成两个平方数之和。
我们感兴趣的则是那些数字n可以写成如下四种形式的平方数之和:

n = a12 +    b12 n = a22 + 2 b22 n = a32 + 3 b32 n = a72 + 7 b72,

其中ak和bk均为正整数。

在不超过107的数中,满足这一性质的有75373个。
在不超过2×109的数中,满足这一性质的有多少个?