Problem 230
Fibonacci Words
For any two strings of digits, A and B, we define FA,B to be the sequence (A,B,AB,BAB,ABBAB,…) in which each term is the concatenation of the previous two.
Further, we define DA,B(n) to be the nth digit in the first term of FA,B that contains at least n digits.
Example:
Let A=1415926535, B=8979323846. We wish to find DA,B(35), say.
The first few terms of FA,B are:
1415926535
8979323846
14159265358979323846
897932384614159265358979323846
14159265358979323846897932384614159265358979323846
Then DA,B(35) is the 35th digit in the fifth term, which is 9.
Now we use for A the first 100 digits of π behind the decimal point:
14159265358979323846264338327950288419716939937510
58209749445923078164062862089986280348253421170679
and for B the next hundred digits:
82148086513282306647093844609550582231725359408128
48111745028410270193852110555964462294895493038196 .
Find ∑n = 0,1,…,17 10n× DA,B((127+19n)×7n).
斐波那契字
对于任意两个数字串A和B,我们定义FA,B为序列(A,B,AB,BAB,ABBAB,…),其中每一项都是拼接前两项而成。
进一步的,取FA,B中首次包含至少n个数字的项,记其第n个数字为DA,B(n)。
举例如下:
取A=1415926535,B=8979323846。我们希望找出DA,B(35)。
FA,B的前几项分别是:
1415926535
8979323846
14159265358979323846
897932384614159265358979323846
14159265358979323846897932384614159265358979323846
因此DA,B(35)是第五项的第35个数字,也就是9。
现在我们取A是圆周率π小数点后的100位数字:
14159265358979323846264338327950288419716939937510
58209749445923078164062862089986280348253421170679
B是接下来的再100位数字:
82148086513282306647093844609550582231725359408128
48111745028410270193852110555964462294895493038196 .
求∑n = 0,1,…,17 10n× DA,B((127+19n)×7n)。