0%

Problem 241


Problem 241


Perfection Quotients

For a positive integer n, let σ(n) be the sum of all divisors of n, so e.g. σ(6) = 1 + 2 + 3 + 6 = 12.

A perfect number, as you probably know, is a number with σ(n) = 2n.

Let us define the perfection quotient of a positive integer as p(n)= $\frac{\sigma(n)}{n}$

Find the sum of all positive integers n ≤ 1018 for which p(n) has the form k + 12, where k is an integer.


完全度商数

对于正整数n,记σ(n)为n的所有约数之和,例如σ(6) = 1 + 2 + 3 + 6 = 12。

你可能已经知道,所谓完全数就是满足σ(n) = 2n的数。

我们定义正整数的完全度商数为p(n)= $\frac{\sigma(n)}{n}$。

在所有正整数n ≤ 1018中,有些数的p(n)可以写成k + 12,其中k是整数。求所有这样的数之和。