0%

Problem 243


Problem 243


Resilience

A positive fraction whose numerator is less than its denominator is called a proper fraction.
For any denominator, d, there will be d−1 proper fractions; for example, with d = 12:
1/12 , 2/12 , 3/12 , 4/12 , 5/12 , 6/12 , 7/12 , 8/12 , 9/12 , 10/12 , 11/12.

We shall call a fraction that cannot be cancelled down a resilient fraction.
Furthermore we shall define the resilience of a denominator, R(d), to be the ratio of its proper fractions that are resilient; for example, R(12) = 4/11 .
In fact, d = 12 is the smallest denominator having a resilience R(d) < 4/10 .

Find the smallest denominator d, having a resilience R(d) < 15499/94744 .


不可约度

分子小于分母的正分数被称为真分数。
对于分母d,一共有d-1个真分数;例如,当d = 12时为:
1/122/123/124/125/126/127/128/129/1210/1211/12

我们称不能被约简的分数为不可约分数
进一步地,我们可以定义分母的不可约度R(d)为它的真分数中不可约分数的比例;例如,R(12) = 4/11
事实上,d = 12是不可约度R(d) < 4/10的最小分母。

求不可约度R(d) < 15499/94744的最小分母d。