0%

Problem 261


Problem 261


Pivotal Square Sums

Let us call a positive integer k a square-pivot, if there is a pair of integers m > 0 and n ≥ k, such that the sum of the (m+1) consecutive squares up to k equals the sum of the m consecutive squares from (n+1) on:

(k-m)2 + ... + k2 = (n+1)2 + ... + (n+m)2.

Some small square-pivots are

  • 4: 32 + 42 = 52
  • 21: 202 + 212 = 292
  • 24: 212 + 222 + 232 + 242 = 252 + 262 + 272
  • 110: 1082 + 1092 + 1102 = 1332 + 1342

Find the sum of all distinct square-pivots ≤ 1010.


平方枢轴数

我们称满足如下性质的正整数k为平方枢轴数:存在整数对m > 0和n ≥ k,使得从k开始往前数(m+1)个连续的数的平方和等于从(n+1)开始往后数m个连续数的平方和。

(k-m)2 + ... + k2 = (n+1)2 + ... + (n+m)2.

一些较小的平方枢轴数为

  • 4: 32 + 42 = 52
  • 21: 202 + 212 = 292
  • 24: 212 + 222 + 232 + 242 = 252 + 262 + 272
  • 110: 1082 + 1092 + 1102 = 1332 + 1342

求≤ 1010的范围内,所有不同的平方枢轴数之和。.