Problem 266
Pseudo Square Root
The divisors of 12 are: 1,2,3,4,6 and 12.
The largest divisor of 12 that does not exceed the square root of 12 is 3.
We shall call the largest divisor of an integer n that does not exceed the square root of n the pseudo square root (PSR) of n.
It can be seen that PSR(3102)=47.
Let p be the product of the primes below 190.
Find PSR(p) mod 1016.
伪平方根
12的约数是:1、2、3、4、6和12。
12的所有约数中,不超过其平方根的最大约数是3。
我们称n的所有约数中,不超过其平方根的最大约数为n的伪平方根,简称PSR。
可以看出PSR(3102)=47。
记p是所有小于190的素数的乘积。
求PSR(p) mod 1016。