0%

Problem 273


Problem 273


Sum of Squares

Consider equations of the form: a2 + b2 = N, 0 ≤ a ≤ b, a, b and N integer.

For N=65 there are two solutions:

a=1, b=8 and a=4, b=7.

We call S(N) the sum of the values of a of all solutions of a2 + b2 = N, 0 ≤ a ≤ b, a, b and N integer.

Thus S(65) = 1 + 4 = 5.

Find ∑S(N), for all squarefree N only divisible by primes of the form 4k+1 with 4k+1 < 150.


平方的和

考虑如下形式的方程:a2 + b2 = N, 0 ≤ a ≤ b, a、b和N均为整数。

对于N=65,方程有两个解:

a=1, b=8 和 a=4, b=7。

对于方程a2 + b2 = N, 0 ≤ a ≤ b, a、b和N均为整数,所有的解中的a值的和记为S(N)。

因此S(65) = 1 + 4 = 5。

有一些无平方因子数N,只能被形如4k+1且< 150的素数整除,对所有这样的数求∑S(N)。