Problem 291
Panaitopol Primes
A prime number p is called a Panaitopol prime if $p=\frac{x^4-y^4}{x^3+y^3}$ for some positive integers x and y.
Find how many Panaitopol primes are less than 5×1015.
帕纳伊托波尔素数
若素数p可以由正整数x和y表示为$p=\frac{x^4-y^4}{x^3+y^3}$,则称其为帕纳伊托波尔素数。
求出有多少小于5×1015的帕纳伊托波尔素数。