Problem 292
Pythagorean Polygons
We shall define a pythagorean polygon to be a convex polygon with the following properties:
- there are at least three vertices,
- no three vertices are aligned,
- each vertex has integer coordinates,
- each edge has integer length.
For a given integer n, define P(n) as the number of distinct pythagorean polygons for which the perimeter is ≤ n.
Pythagorean polygons should be considered distinct as long as none is a translation of another.
You are given that P(4) = 1, P(30) = 3655 and P(60) = 891045.
Find P(120).
毕达哥拉斯多边形
我们定义毕达哥拉斯多边形为满足下列性质的凸多边形:
- 有至少三个顶点,
- 不存在三个顶点共线,
- 每个顶点坐标均为整数,
- 每条边长度均为整数。
对于给定的整数n,记P(n)为周长≤ n的不同毕达哥拉斯多边形的数目。
只要不能将其中一个通过平移得到另一个,就被认为是不同的毕达哥拉斯多边形。
已知P(4) = 1,P(30) = 3655,以及P(60) = 891045。
求P(120)。