0%

Problem 302


Problem 302


Strong Achilles Numbers

A positive integer n is powerful if p2 is a divisor of n for every prime factor p in n.

A positive integer n is a perfect power if n can be expressed as a power of another positive integer.

A positive integer n is an Achilles number if n is powerful but not a perfect power. For example, 864 and 1800 are Achilles numbers: 864 = 25·33 and 1800 = 23·32·52.

We shall call a positive integer S a Strong Achilles number if both S and φ(S) are Achilles numbers.1
For example, 864 is a Strong Achilles number: φ(864) = 288 = 25·32. However, 1800 isn’t a Strong Achilles number because: φ(1800) = 480 = 25·31·51.

There are 7 Strong Achilles numbers below 104 and 656 below 108.

How many Strong Achilles numbers are there below 1018?

1 φ denotes Euler’s totient function.


强阿喀琉斯数

我们称正整数n是强大的(似幂的),如果对于n的每一个质因数p,p2都是n的约数。

我们称正整数n是完美的(完全幂的),如果n可以表达成另一个正整数的幂。

我们称正整数n是阿喀琉斯数,如果n是强大的但不是完美的。例如,864和1800都是阿喀琉斯数:864 = 25·33,而1800 = 23·32·52

我们称正整数S是强阿喀琉斯数,如果S和φ(S)都是阿喀琉斯数。1
例如,864是强阿喀琉斯数:φ(864) = 288 = 25·32。然而,1800不是强阿喀琉斯数:φ(1800) = 480 = 25·31·51

一共有7个小于104的强阿喀琉斯数,656个小于108的强阿喀琉斯数。

有多少个小于1018的强阿喀琉斯数?

1 φ表示欧拉总计函数