Problem 31
Coin sums
In the United Kingdom the currency is made up of pound ($\it\unicode{xA3}$) and pence ($p$). There are eight coins in general circulation:
$$1p, 2p, 5p, 10p, 20p, 50p, {\it\unicode{xA3}}1(100p), {\it\unicode{xA3}}2(200p).$$
It is possible to make ${\it\unicode{xA3}}2$ in the following way:
$$1\times {\it\unicode{xA3}}1+ 1\times 50p + 2 \times 20 p+1\times 5p+ 1\times 2p+3\times 1p$$
How many different ways can ${\it\unicode{xA3}}2$ be made using any number of coins?
硬币求和
英国的货币单位分为英镑($\it\unicode{xA3}$)和便士($p$)。目前流通的硬币一共有八种面值:
$$1p, 2p, 5p, 10p, 20p, 50p, {\it\unicode{xA3}}1(100p), {\it\unicode{xA3}}2(200p).$$
想要凑出${\it\unicode{xA3}}2$,其中一种做法是:
$$1\times {\it\unicode{xA3}}1+ 1\times 50p + 2 \times 20 p+1\times 5p+ 1\times 2p+3\times 1p$$
不限制硬币数量,凑出${\it\unicode{xA3}}2$有多少种不同的做法?