Problem 319
Bounded Sequences
Let x1, x2,…, xn be a sequence of length n such that:
- x1 = 2
- for all 1 < i ≤ n : xi-1 < xi
- for all i and j with 1 ≤ i, j ≤ n : (xi)j < (xj + 1)i
There are only five such sequences of length 2, namely: {2,4}, {2,5}, {2,6}, {2,7} and {2,8}.
There are 293 such sequences of length 5; three examples are given below:
{2,5,11,25,55}, {2,6,14,36,88}, {2,8,22,64,181}.
Let t(n) denote the number of such sequences of length n.
You are given that t(10) = 86195 and t(20) = 5227991891.
Find t(1010) and give your answer modulo 109.
有界序列
记x1, x2,…, xn是长度为n的序列,且满足:
- x1 = 2
- 对于所有1 < i ≤ n:xi-1 < xi
- 对于所有1 ≤ i, j ≤ n:(xi)j < (xj + 1)i
在长度为2的序列中,这样的数列只有5个,分别是:{2,4}、{2,5}、{2,6}、{2,7}和{2,8}。
在长度为5的序列中,这样的数列共有293个;如下是其中三个例子:
{2,5,11,25,55}、{2,6,14,36,88}、{2,8,22,64,181}。
在长度为n的序列中,记这样的数列有t(n)个。
已知t(10) = 86195以及t(20) = 5227991891。
求t(1010)并将你的答案模109取余。