0%

Problem 341


Problem 341


Golomb’s self-describing sequence

The Golomb’s self-describing sequence {G(n)} is the only nondecreasing sequence of natural numbers such that n appears exactly G(n) times in the sequence. The values of G(n) for the first few n are

n 10 11 12 13 14 15
G(n) 1 2 2 3 3 4 4 4 5 5 5 6 6 6 6

You are given that G(103) = 86, G(106) = 6137.
You are also given that ΣG(n3) = 153506976 for 1 ≤ n < 103.

Find ΣG(n3) for 1 ≤ n < 106.


戈洛姆的自描述序列

戈洛姆的自描述序列 {G(n)}是唯一一个单调不降且n出现恰好G(n)次的自然数序列。对于前几个n,G(n)的值为

n 10 11 12 13 14 15
G(n) 1 2 2 3 3 4 4 4 5 5 5 6 6 6 6

已知G(103) = 86,G(106) = 6137。
此外,还已知对于1 ≤ n < 103,ΣG(n3) = 153506976。

对于1 ≤ n < 106,求ΣG(n3)。