Problem 343
Fractional Sequences
For any positive integer k, a finite sequence ai of fractions xi/yi is defined by:
a1 = 1/k and
ai = (xi-1+1)/(yi-1-1) reduced to lowest terms for i>1.
When ai reaches some integer n, the sequence stops. (That is, when yi=1.)
Define f(k) = n.
For example, for k = 20:
1/20 → 2/19 → 3/18 = 1/6 → 2/5 → 3/4 → 4/3 → 5/2 → 6/1 = 6
So f(20) = 6.
Also f(1) = 1, f(2) = 2, f(3) = 1 and Σf(k3) = 118937 for 1 ≤ k ≤ 100.
Find Σf(k3) for 1 ≤ k ≤ 2×106.
分数序列
对于任意正整数k,由分数xi/yi组成的有限序列ai按如下方式定义:
a1 = 1/k,以及
对于i>1,ai = (xi-1+1)/(yi-1-1),并约分到最简形式。
当ai为某个整数n时,序列结束。(换句话说,当yi=1时序列结束。)
定义f(k) = n。
例如,对于k = 20:
1/20 → 2/19 → 3/18 = 1/6 → 2/5 → 3/4 → 4/3 → 5/2 → 6/1 = 6
所以f(20) = 6。
此外,已知f(1) = 1,f(2) = 2,f(3) = 1以及对于1 ≤ k ≤ 100,Σf(k3) = 118937。
对于1 ≤ k ≤ 2×106,求Σf(k3)。