Problem 37
Truncatable primes
The number $3797$ has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: $3797$, $797$, $97$, and $7$. Similarly we can work from right to left: $3797$, $379$, $37$, and $3$.
Find the sum of the only eleven primes that are both truncatable from left to right and right to left.
NOTE: $2$, $3$, $5$, and $7$ are not considered to be truncatable primes.
可截素数
$3797$有着奇特的性质。它本身是一个素数;如果从左往右逐一截去数字,剩下的仍然都是素数:$3797$、$797$、$97$和$7$;如果从右往左逐一截去数字,剩下的也仍然都是素数:$3797$、$379$、$37$和$3$。
如果一个素数满足,无论从左往右还是从右往左逐一截去数字,剩下的仍然都是素数,则称之为可截素数。已知总共有十一个可截素数,求这些数的和。
注意:$2$、$3$、$5$和$7$不被视为可截素数。