Problem 386
Maximum length of an antichain
Let n be an integer and S(n) be the set of factors of n.
A subset A of S(n) is called an antichain of S(n) if A contains only one element or if none of the elements of A divides any of the other elements of A.
For example: S(30) = {1, 2, 3, 5, 6, 10, 15, 30}
{2, 5, 6} is not an antichain of S(30).
{2, 3, 5} is an antichain of S(30).
Let N(n) be the maximum length of an antichain of S(n).
Find ΣN(n) for 1 ≤ n ≤ 108
反链的最大长度
取整数n,记S(n)为n的约数构成的集合。
若S(n)的子集A只包含一个元素,或者A中任意一个元素均不能整除其它元素,则称A为S(n)的反链。
例如:S(30) = {1, 2, 3, 5, 6, 10, 15, 30}
{2, 5, 6}不是S(30)的反链。
{2, 3, 5}是S(30)的反链。
记N(n)为S(n)的反链的最大长度。
对于1 ≤ n ≤ 108,求ΣN(n)。