Problem 39
Integer right triangles
If $p$ is the perimeter of a right angle triangle with integral length sides, $\{a,b,c\}$, there are exactly three solutions for $p = 120$.
$$\{20,48,52\}, \{24,45,51\}, \{30,40,50\}$$
For which value of $p \le 1000$, is the number of solutions maximised?
整数边长直角三角形
考虑三边长$\{a,b,c\}$均为整数的直角三角形,并记其周长为$p$,当$p = 120$时,恰好存在三个不同的解:
$$\{20,48,52\}, \{24,45,51\}, \{30,40,50\}$$
在所有的$p \le 1000$中,$p$取何值时有最多个解?