0%

Problem 395


Problem 395


Pythagorean tree

The Pythagorean tree is a fractal generated by the following procedure:

Start with a unit square. Then, calling one of the sides its base (in the animation, the bottom side is the base):

  1. Attach a right triangle to the side opposite the base, with the hypotenuse coinciding with that side and with the sides in a 3-4-5 ratio. Note that the smaller side of the triangle must be on the ‘right’ side with respect to the base (see animation).
  2. Attach a square to each leg of the right triangle, with one of its sides coinciding with that leg.
  3. Repeat this procedure for both squares, considering as their bases the sides touching the triangle.
    The resulting figure, after an infinite number of iterations, is the Pythagorean tree.

It can be shown that there exists at least one rectangle, whose sides are parallel to the largest square of the Pythagorean tree, which encloses the Pythagorean tree completely.

Find the smallest area possible for such a bounding rectangle, and give your answer rounded to 10 decimal places.


毕达哥拉斯树

毕达哥拉斯树是按如下步骤生成的分形图形:

从一个单位正方形开始,以其中一条边为基底(在图示动画中,单位正方形下放的边作为基底):

  1. 给基底所对的边粘连上一个三边长之比为3-4-5的直角三角形,其中基底所对的边为斜边。注意直角三角形较短的直角边始终处在相对基底来说的右侧(参见动画演示)。
  2. 给直角三角形的两条直角边分别粘连上一个正方形,该直角边充当正方形的其中一条边。
  3. 对这两个正方形重复以上操作,并将正方形与之粘连的直角边作为基底。
    经过无数次迭代所最终得到的三角形就是毕达哥拉斯树。

可以证明,至少存在一个长方形,其各边与初始的单位正方形各边分别平行,且该长方形完整包含了整棵毕达哥拉斯树在其内部。

求这个长方形的最小面积,并将你的答案四舍五入至10位小数。