Problem 401
Sum of squares of divisors
The divisors of 6 are 1,2,3 and 6.
The sum of the squares of these numbers is 1+4+9+36=50.
Let sigma2(n) represent the sum of the squares of the divisors of n. Thus sigma2(6)=50.
Let SIGMA2 represent the summatory function of sigma2, that is SIGMA2(n)=∑sigma2(i) for i=1 to n.
The first 6 values of SIGMA2 are: 1,6,16,37,63 and 113.
Find SIGMA2(1015) modulo 109.
约数的平方和
6的约数有1、2、3和6。
这些数的平方和是1+4+9+36=50。
我们记sigma2(n)是n的所有约数的平方和。因此sigma2(6)=50.
我们记SIGMA2是sigma2的和函数,也就是说SIGMA2(n)=∑sigma2(i),其中i=1~n。
SIGMA2的前6项为:1、6、16、37、63和113。
求SIGMA2(1015)模109取余的值。