Problem 405
A rectangular tiling
We wish to tile a rectangle whose length is twice its width.
Let T(0) be the tiling consisting of a single rectangle.
For n > 0, let T(n) be obtained from T(n-1) by replacing all tiles in the following manner:
The following animation demonstrates the tilings T(n) for n from 0 to 5:
Let f(n) be the number of points where four tiles meet in T(n).
For example, f(1) = 0, f(4) = 82 and f(109) mod 177 = 126897180.
Find f(10k) for k = 1018, give your answer modulo 177.
给长方形铺地砖
我们希望给一个长是宽的两倍的长方形铺上地砖。
T(0)表示只用一个长方形的铺法。
对于n > 0,T(n)表示以T(n-1)为基础,将后者的每一块地砖作如下替换得到的新铺法:
以下动画演示了n从0到5时的T(n):
记f(n)是T(n)中有四块地砖相遇的点的数目。
已知f(1) = 0,f(4) = 82,以及f(109) mod 177 = 126897180。
当k = 1018时,求f(10k),并将其模177取余作为你的答案。